تبلیغات
سوسا وب تولز -ابزار وبلاگ
riazi - حد تابع
riazi
نوشته شده در تاریخ یکشنبه 10 دی 1391 توسط سجاد کاجی

حد تابع



هرگاه نقطه‌ای مانند x در فاصلهٔ δ از c باشد f(x) در فاصلهٔ ε از L قرار می‌گیرد.

برای تمامی x > S، مقدار f(x) در بازهٔ ε از L قرار می‌گیرد.

فرض کنید f(x)‎ تابعی حقیقی و c عددی حقیقی باشد. عبارت

 \lim_{x \to c}f(x) = L

بدین معنا است که اگر x به‌اندازهٔ کافی به c نزدیک شود مقدار f(x)‎ به‌اندازهٔ دلخواه به L نزدیک خواهد شد. رابطهٔ ریاضی بالا را چنین می‌خوانیم: «حد f از x هنگامی که x به c نزدیک می‌شود برابر L است.»

کوشی در ۱۸۲۱[۳] و به دنبال او کارل وایراشتراس تعریفی که در بالا برای حد داده شد را ریاضی وار بیان کردند، این تعریف در سدهٔ ۱۹ میلادی با نام «تعریف (ε, δ) حد» شناخته شد. آن‌ها در این تعریف از اپسیلون، ε، برای نشان دادن یک مقدار مثبت بسیار کوچک بهره بردند. هنگامی که «f(x) به‌اندازهٔ دلخواه به L نزدیک می‌شود» به این معنی است که مقدار f(x) کم کم در بازهٔ (L - ε, L + ε) جای می‌گیرد. با کمک قدر مطلق[۳] چنین می‌نویسیم: |f(x) - L| < ε.
عبارت «هنگامی که x به‌اندازهٔ کافی به c نزدیک می‌شود» به این معنی است که مقدارهای حقیقی از x را در نظر داریم که فاصلهٔ آن‌ها از c کمتر از عدد مثبت دلتا، δ باشد. یعنی x عضو یکی از دو بازهٔ (c - δ, c) یا (c, c + δ) است، نوشتار ریاضی این عبارت چنین است: ۰ < |x - c| < δ. نامساوی نخست یعنی فاصلهٔ میان c و x بیشتر از صفر است و x ≠ c است در حالی که نامساوی دوم می‌گوید فاصلهٔ x از c کمتر از δ است.[۳]

توجه داشته باشید که تعریف بالا برای حد می‌تواند درست باشد حتی اگر f(c) \neq L باشد. در حقیقت حتی نیازی نیست که f(x) در c تعریف شده باشد.

برای نمونه اگر داشته باشیم:

 f(x) = \frac{x^2 - 1}{x - 1}

آنگاه f(1) تعریف نشده‌است (بخش بر صفر) حال هر چه x به ۱ نزدیک می‌شود، f(x) متناسب با آن نیز به ۲ نزدیک می‌شود:

f(۰٫۹) f(۰٫۹۹) f(۰٫۹۹۹) f(۱٫۰) f(۱٫۰۰۱) f(۱٫۰۱) f(۱.۱)
۱٫۹۰۰ ۱٫۹۹۰ ۱٫۹۹۹ ⇒ تعریف نشده ⇐ ۲٫۰۰۱ ۲٫۰۱۰ ۲٫۱۰۰

بنابراین، مقدار f(x) به ۲ نزدیک می‌شود هرگاه بتوانیم x را به‌اندازهٔ کافی به ۱ نزدیک کنیم.

به عبارت دیگر  \lim_{x \to 1} \frac{x^2-1}{x-1} = 2

یک تابع علاوه بر داشتن حد در مقدارهای معین، می‌تواند در بی نهایت هم دارای حد باشد. برای نمونه:

f(x) = {2x-1 \over x}
  • f(۱۰۰) = ۱٫۹۹۰۰
  • f(۱۰۰۰) = ۱٫۹۹۹۰
  • f(۱۰۰۰۰) = ۱٫۹۹۹۹۰

هرگاه x مقدارهای بی نهایت بزرگ به خود گیرد، مقدار f(x) به سوی ۲ کشیده می‌شود. در این حالت می‌گوییم حد f(x) به ازای x‌های رو به بی نهایت، برابر ۲ است. بیان ریاضی این گفته چنین است:

 \lim_{x \to \infty} \frac{2x-1}{x} = 2.

اثبات

روش اثبات اپسیلون و دلتا مشهور است که بار اول توسط ریاضیدان آلمانی کارل ویستراس عنوان شد[منبع توسط نویسنده یاد نشده]. با استفاده از آن حد را چنین تعریف می‌کنیم:

Epsilondelta.jpg

گوییم f(x) در نقطه‌ای مانند  x_0 دارای حد L است اگر به ازای هر عدد مثبت \epsilon عدد مثبتی مثل \delta موجود باشد به طوری که اگر 0 <|x-x_0| <\delta، آنگاه|f(x)-L| <\epsilon.

به عبارت دیگر برای هر  \varepsilon\ >0 یک  \delta\ >0 وجود داشته باشد، که برای هر x_0 با خاصیت  |x-x_0|< \delta\ ، داشته باشیم |f(x)-L|< \varepsilon.

برای تعریف غیرصوری باید گفت حد تابع f(x) ،L است اگر وقتی x \to a، f(x) به حد L نزدیک بشود، یا f(x) در a دارای حد L است، اگر هنگامی که x به a میل می‌کند، f(x) به L نزدیک شود.


مثال

اثبات 
\lim_{x \to 0}\sqrt{x} = 0 
 :

برای هر  \varepsilon\ >0 یک  \delta\ >0 وجود دارد به شکلی که:

 |\sqrt{x}-0|< \varepsilon\ اگر  0<x<\delta

یا  \sqrt{x}< \varepsilon\ اگر  0<x<\delta

با گرفتن جذر هر دو سمت می‌توانیم عبارت قبلی را به شکل زیر بنوسیم:

 \sqrt{x}< \epsilon^2 اگر  0<x<\delta

بنا بر این \delta \le \epsilon^2

و این \lim_{x \to 0}\sqrt{x} = 0 را اثبات می‌کند.

حد یک دنباله


دنبالهٔ روبرو را در نظر بگیرید: ۱٫۷۹, ۱٫۷۹۹, ۱٫۷۹۹۹,... می‌توان دریافت که اعداد این دنباله به عدد ۱٫۸ نزدیک می‌شوند. ۱٫۸ حد این دنباله‌است.

فرض کنید a۱, a۲,... دنباله‌ای از عددهای حقیقی است. آنگاه می‌توان گفت عدد حقیقی L حد این دنباله‌است هرگاه:

 \lim_{n \to \infty} a_n = L

یعنی:

به ازای هر عدد حقیقی ε > ۰ می‌توان یک عدد طبیعی n۰ پیدا کرد به گونه‌ای که برای تمام n > n۰ آنگاه .

عبارت بالا بدان معنا است که همهٔ عضوهای دنباله به حد دنباله نزدیک می‌شوند چون عبارت قدر مطلقی برابر است با فاصلهٔ میان an و L. همهٔ دنباله‌ها دارای حد نیستند، اگر دنباله‌های حد داشت به آن همگرا و اگر نداشت واگرا می‌گوییم. می‌توان نشان داد که دنباله‌های همگرا، حد یکتا دارند.

حد یک دنباله و حد یک تابع رابطهٔ نزدیکی با هم دارند.



قالب وبلاگ
m